If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-84x+92=0
a = 16; b = -84; c = +92;
Δ = b2-4ac
Δ = -842-4·16·92
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{73}}{2*16}=\frac{84-4\sqrt{73}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{73}}{2*16}=\frac{84+4\sqrt{73}}{32} $
| 42x=92 | | 2(8x-4)+(2x)2=70 | | 3(2x-4)+3x=5x+4 | | 7+4=19x | | 10/x=6/35 | | 3(2x-4)+3=5x+4 | | 6x-12+3x=5x+4 | | 3=-5v+3(v-3) | | 36^2x-3=216 | | 2^-2n=4 | | (7+19b)=(-15) | | -3x-2x+5+4x-7x=6 | | H=6+7h=42 | | 2^2n=4 | | a+2a=156 | | 18=n—18 | | 12+8y=22 | | 3x-10=11x/4 | | 16^-r=32 | | 4x+3x-7+(-2x)-2x=(-3) | | 0.5x+10=-7 | | 24=2x(x-1) | | 2/3k=28-4/9 | | -1/2k=-1.6 | | (3x+39)+(2x+6)=180 | | 11/18n-1/18n=5 | | -2x+28=x+13 | | 216^3p+1=36^-p | | 1118n−118n=5 | | 3^v2+41v–14=0 | | 3(3x-2)-11=-6(x+7)+9 | | 6^3b-3=216 |